BBA Report

BBA 70049

STIMULATION OF Na⁺-DEPENDENT AMINO ACID UPTAKE BY ACTIVATION OF THE Ca²⁺-DEPENDENT K⁺ CHANNEL IN THE EHRLICH ASCITES TUMOR CELL

MIGUEL VALDEOLMILLOS, JAVIER GARCÍA-SANCHO and BENITO HERREROS

Departamento de Fisiologia y Bioquímica, Facultad de Medicina, Valladolid (Spain)

(Received March 9th, 1982)

Key words: K+ channel; Ca2+ dependence; Amino acid transport; Quinine; Membrane potential; (Ehrlich ascites cell)

The activation of Ca²⁺-dependent K⁺ channel by propranolol or by ascorbate-phenazine methosulphate stimulates Na+-dependent transport of \alpha-aminoisobutyric acid. This stimulation arises from a membrane hyperpolarization due to the specific increase of membrane K⁺ conductance. The same treatment does not modify the Na⁺-independent uptake of the norbornane amino acid.

A large variety of animal cells possess in their membrane K⁺ channels whose activity is controlled by the cytoplasmic Ca²⁺ concentration. The involvement of these channels in the control of membrane potential at rest as well as in the genesis of post-spike hyperpolarizations has been shown in several nerve and muscle cells [1]. A role for this transport system in the response of different epithelial and secretory cells to humoral modulators has also been suggested [2-4]. We have reported recently the presence of Ca2+-dependent K⁺ channels in the Ehrlich cell membrane [5]. Here we report the effects of the activation of such channels on amino acid transport.

scribed previously [5-7]. Membrane potential was assessed from the distribution of triphenylmethylphosphonium (TPMP) in the presence of tetraphenylboron [8]. The incubation medium had the following composition (mM): NaCl, 120; CaCl₂, 0.5; KCl, 1; choline chloride, 29; Hepes-NaOH buffer, 20 (pH 7.4). In several experiments KCl

Amino acid transport was measured as de-

Abbreviations: TPMP, Triphenylmethylphosphonium; Hepes,

N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid; asc-PMS: 20 mM sodium ascorbate + 0.1 mM phenazine methosulphate.

was increased to 5 or 30 mM, replacing an equimolar amount of choline chloride. Propagation and handling of the Ehrlich cell were as described previously [7].

The addition of 0.5 mM propranolol or 20 mM sodium ascorbate (replacing an equimolar amount of NaCl) + 0.1 mM phenazine methosulphate (asc-PMS) to the incubation medium activates the Ca²⁺-dependent K⁺ channel of the Ehrlich cell [5]. Fig. 1 shows that this activation is accompanied by an stimulation of the uptake of α -aminoisobutyric acid, a model substrate for the Na⁺-dependent transport system A [9]. This effect was prevented by quinine, a known inhibitor of the Ca²⁺dependent K⁺ channel in the Ehrlich cell [5] as well as in other cell systems [10,11].

The effects of the addition of asc-PMS or propranolol did not appear when the K+ concentration of the medium was increased to 30 mM (Table I). Under these conditions there is no net movement of K⁺ (Table I), as could be expected from the values of the transmembrane potential estimated for these cells [12]. Propranolol in Na⁺free medium did not modify the uptake of 0.1 mM 2-aminonorbonyl-2-carboxylic acid, a model substrate for the Na⁺-independent system L [9] (not shown). The above results strongly suggest that the

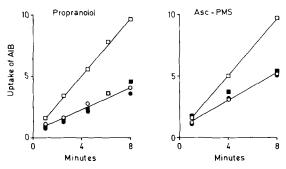


Fig. 1. Stimulation of the uptake of α -aminoisobutyric acid (AIB) by propranolol or asc-PMS. The uptake of 1 mM AIB was studied at 37°C and under N_2 from medium containing 1 mM K⁺, and is expressed as the distribution ratio (cpm per I of cell water/cpm per I of medium) reached. Additions: \bigcirc — \bigcirc , none; \bigcirc — \bigcirc , 1 mM quinine; \square — \square 0.5 mM propranolol (left) or 20 mM sodium ascorbate+0.1 mM phenazine methosulphate (right); \square — \square , same+1 mM quinine.

increased uptake of α-aminoisobutyric acid observed under treatment with asc-PMS or propranolol is due to an increase of the membrane permeability to K⁺ that generates a membrane hyperpolarization. Since Na⁺-dependent amino acid transport is electrogenic [13–15], the increase of the electrochemical gradient for Na⁺ resulting from the membrane hyperpolarizacion is expected to stimulate amino acid uptake through the Na⁺-dependent system A but not through the Na⁺-independent system L, as observed. The occurrence of membrane hyperpolarization was demon-

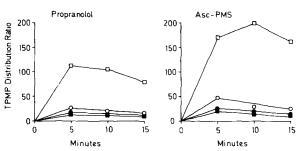


Fig. 2. Effects of propranolol or asc-PMS on the distribution ratio of TPMP. The initial concentrations of TPMP and tetraphenylboron in the incubation medium were 4.4 and 3.3 μ M, respectively. Other conditions and symbols as in Fig. 1. Similar results were obtained in Na⁺-free (substituted by choline) medium. The experiments with propranolol and with asc-PMS were done with two different cell batches.

strated by the fact that asc-PMS or propranolol increased the distribution ratio reached by TPMP. This effect was also prevented by quinine (Fig. 2) or by increasing the K⁺ concentration of the medium to 30 mM (not shown).

These results extend previous observations on the effects of propranolol on amino acid transport in the Ehrlich cell [16], and suggest that the degree of activation of the Ca²⁺-dependent K⁺ channels of the plasma membrane could modulate Na⁺-dependent transport through changes in membrane potential. Several responses to hormones and other humoral modulators are known to include changes of amino acid transport [17]. In some cases, Ca²⁺-dependence [18–20] and/or

TABLE I EFFECTS OF MEDIUM K^+ Concentration on the stimulation of the uptake of 1 mm $\alpha\textsc{-}AMINOISOBUTYRIC\ ACID\ (AIB)\ INDUCED\ BY PROPRANOLOL\ OR\ asc-PMS$

Each value is mean \pm S.D. of four experiments.

Condition	5 mM K ⁺		30 mM K ⁺	
	Uptake a of AIB	Cell K ^{+ b}	Uptake a of AIB	Cell K ^{+ b}
Control c	12.2±2.9	94±1	10.0±0.9	115±2
asc-PMS c	20.4 ± 1.8	79±2	10.2 ± 0.1	111 ± 5
Control	26.6 ± 1.3	142 ± 3	14.4 ± 0.5	158 ± 4
Propranolol	32.5 ± 1.4	119±8	13.6 ± 0.8	168 ± 6

^a 8 min distribution ratio.

b mequiv./l cell water.

^c These two sets of experiments were performed in anaerobiosis.

simultaneous changes of K⁺ permeability [20–22] and membrane potential [20,23,24] have been reported. On these basis, the possible involvement of the Ca²⁺-dependent K⁺ channel in such responses deserves to be investigated.

Financial support from the Fondo Nacional para la Investigación Científica is gratefully acknowledged.

References

- 1 Meech, R.W. (1976) in Calcium in Biological Systems (Duncan, C.J., ed.), pp. 161-191, Cambridge University Press, Cambridge
- 2 Putney, J.W., Jr. (1979) Pharmacol. Rev. 30, 209-245
- 3 Atwater, I., Dawson, C.M., Ribalet, B. and Rojas, E. (1979) J. Physiol. 288, 575-588
- 4 Burgess, G.M., Claret, M. and Jenkinson, D.H. (1979) Nature 279, 544-546
- 5 Valdeolmillos, M., Garcia-Sancho, J. and Herreros, B. (1982) Biochim. Biophys. Acta 685, 273-278
- 6 García-Sancho, J., Sanchez, A. and Christensen, H.N. (1977) Biochim. Biophys. Acta 464, 295-312
- 7 Inui, Y. and Christensen, H.N. (1966) J. Gen. Physiol. 50, 203-224
- 8 Cheng, K., Haspel, H.C., Vallano, M.L., Osotimehim, B. and Sonenberg, M. (1980) J. Membrane Biol. 56, 191-201

- 9 Christensen, H.N. (1975) Biological Transport, 2nd edn., W.A. Benjamin, Inc, Reading, MA
- Armando-Hardy, M., Ellory, J.C., Ferreira, H.G., Fleminger,
 S. and Lew, V.L. (1975) J. Physiol. 250, 32P-33P
- 11 Sanchez, A., Garcia-Sancho, J. and Herreros, B. (1980) FEBS Lett. 110, 65-68
- 12 Heinz, A., Jackson, J.W., Richey, N.E., Sachs, G. and Schafer, J.A. (1981) J. Membrane Biol. 62, 149-160
- 13 Heinz, G., Geck, P. and Pietrzyck, C. (1975) Ann. N.Y. Acad. Sci. 364, 428-441
- 14 Laris, P.C., Bootman, M., Pershadsing, H.A. and Johnstone, R.M. (1976) Biochim. Biophys. Acta 436, 475-488
- 15 Murer, H. and Kinne, R. (1980) J. Membrane Biol. 55, 81-95
- 16 Pershadsing, H.A., Johnstone, R.M. and Laris, P.C. (1978) Biochim. Biophys. Acta 509, 360-373
- 17 Guidotti, G.G., Borghetti, A.F. and Gazzola, G.C. (1978) Biochim. Biophys. Acta 515, 329-366
- 18 Whitney, R.B. and Sutherland, R.M. (1973) Biochim. Biophys. Acta 298, 790-797
- 19 Jensen, P., Winger, L., Rasmussen, H. and Nowell, P. (1977) Biochim. Biophys. Acta 496, 374-383
- 20 Oliveira-Castro, G.M. and Dos Reis, G.A. (1981) Biochim. Biophys. Acta 640, 500-511
- 21 Quastel, M.R. and Kaplan, J.G. (1970) Exptl. Cell Res. 63, 230-233
- 22 Kaplan, J.G. (1978) Ann. Rev. Physiol. 40, 19-41
- 23 Flatman, J.A. and Clausen, T. (1979) Nature 281, 580-581
- 24 Tsien, R.Y., Pozzan, T. and Rink, T.J. (1982) Nature 295, 68-71